Forecasting bubbles with mixed causal-noncausal autoregressive models
نویسندگان
چکیده
Density forecasts of locally explosive processes are investigated using mixed causal-noncausal models, namely time series models with both lag and lead components. In the absence theoretical expressions for predictive density a large range potential error distributions, two approximation methods analysed compared Monte Carlo simulations. The focus is on prediction one-step ahead probabilities turning points during bubble episodes. A thorough analysis provides some guidance in these extreme events, suggestion to consider approaches together as they jointly carry more information. illustrated an application Nickel prices, focusing financial crisis bubble.
منابع مشابه
Forecasting with Periodic Autoregressive Time Series Models
This chapter is concerned with forecasting univariate seasonal time series data using periodic autoregressive models We show how one should account for unit roots and deterministic terms when generating out of sample forecasts We illus trate the models for various quarterly UK consumption series This is the rst version July of a chapter that is to be prepared for potential inclusion in the Comp...
متن کاملForecasting with time-varying vector autoregressive models
The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian infere...
متن کاملForecasting with a noncausal VAR model
We propose simulation-based forecasting methods for the noncausal vector autoregressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical methods are required because the prediction problem is generally nonlinear and, therefore, its analytical solution is not available. It turns out that different special cases of the model call for different simulation procedures. Simulatio...
متن کاملCausal Search in Structural Vector Autoregressive Models
This paper reviews a class of methods to perform causal inference in the framework of a structural vector autoregressive model. We consider three different settings. In the first setting the underlying system is linear with normal disturbances and the structural model is identified by exploiting the information incorporated in the partial correlations of the estimated residuals. Zero partial co...
متن کاملForecasting with prediction intervals for periodic autoregressive moving average models
Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and covariance function vary with the season. In this study, we develop and implement forecasting procedures for PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula for the asymptotic error variance is provided, so that Gaussian pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Econometrics and Statistics
سال: 2021
ISSN: ['2452-3062', '2468-0389']
DOI: https://doi.org/10.1016/j.ecosta.2020.03.007